Goal Seek (5)

Q. How much down payment should a person deposit at the beginning of 5 year duration for accumulating Rs. 100000 at the end. He also plans to deposit Rs. 10000 per year as a recurring deposit at the end of each year. The bank offers 8% rate of interest compounded annually. Use FV to compute the accumulated amount at the end of the duration. Use Goal Seek for finding the answer instead of using PV.
Q. A student is planning her goals about the marks she should attain in the forthcoming Semester 4 examinations in order to achieve a distinction (75\%). Assuming that examination of each subject is for 100 marks, her marks of the previous semesters are given as under.

	Subject 1	Subject 2	Subject 3	Subject 4
Semester 1	82	67	53	87
Semester 2	88	78	76	69
Semester 3	89	85	91	67

Find out how many marks should she obtain in $4^{\text {th }}$ semester to secure distinction.
Q. A business owner wants to decide if he should try to increase the sales a product or price of an existing product in order to increase the profit by 10%.

Current Sales	82
Cost per Unit	75
Profit per unit	12

The owner believes that he can either increase sales by 5 units without incurring additional costs while the price can be increased by Rs 8 without affecting the sales.
Q. A certain sum of money is invested at 4\% compounded annually. The interest for the second year is Rs 25. Find the interest for the third year using goal seek.

1-D Data Table (3)

Q. Using NPV function, compute the net present value of the investment for the costs of capital 8\%, $10 \%, 12 \%$ and 15% in the form of a row wise 1-D data table.

Period	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Outflow	100000				
Inflow		25000	35000	36000	40000

Hint: Net present Value $=$ NPV (of cash flows starting from period 1$)-$ Cash flow at period 0
Q. Using NPV function, compute the net present value of the investment for the costs of capital 8%, $10 \%, 12 \%$ and 15% in the form of a column wise 1-D data table.

Period	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Outflow	100000				
Inflow		25000	35000	36000	40000

Hint: Net present Value $=$ NPV (of cash flows starting from period 1$)-$ Cash flow at period 0
Q. Using data table, draw the following curve from -5 to +5 value of x.

$$
y=2 x^{2}+3 x+4
$$

2-D Data Table (4)
Q. Using 2-D data table, prepare the future value annuity table like the one shown below. Each of the future value is computed using the formula $\mathrm{FV}=\frac{\left[(1+i)^{n}-i\right]}{i}$

Q. Using 2-D data table, prepare the natural log table like the one shown below. Each of the future value is computed using the formula $\mathrm{FV}=\log (x+y / 100)$ where the values of x are given in the first column and values y are given on the row header.

Natural Logarithm Table

N	0	1	2	3	4	5	6	7	8	9
1.0	0.0000	0.0100	0.0198	0.0296	0.0392	0.0488	0.0583	0.0677	0.0770	0.0862
1.1	0.0953	0.1044	0.1133	0.1222	0.1310	0.1398	0.1484	0.1570	0.1655	0.1740
1.2	0.1823	0.1906	0.1989	0.2070	0.2151	0.2231	0.2311	0.2390	0.2469	0.2546
1.3	0.2624	0.2700	0.2776	0.2852	0.2927	0.3001	0.3075	0.3148	0.3221	0.3293
1.4	0.3365	0.3436	0.3507	0.3577	0.3646	0.3716	0.3784	0.3853	0.3920	0.3988
1.5	0.4055	0.4121	0.4187	0.4253	0.4318	0.4383	0.4447	0.4511	0.4574	0.4637
1.6	0.4700	0.4762	0.4824	0.4886	0.4947	0.5008	0.5068	0.5128	0.5188	0.5247
1.7	0.5306	0.5365	0.5423	0.5481	0.5539	0.5596	0.5653	0.5710	0.5766	0.5822
1.8	0.5878	0.5933	0.5988	0.6043	0.6098	0.6152	0.6206	0.6259	0.6313	0.6366
1.9	0.6419	0.6471	0.6523	0.6575	0.6627	0.6678	0.6729	0.6780	0.6831	0.6881
2.0	0.6931	0.6981	0.7031	0.7080	0.7129	0.7178	0.7227	0.7275	0.7324	0.7372
2.1	0.7419	0.7467	0.7514	0.7561	0.7608	0.7655	0.7701	0.7747	0.7793	0.7839
2.2	0.7885	0.7930	0.7975	0.8020	0.8065	0.8109	0.8154	0.8198	0.8242	0.8286
2.3	0.8329	0.8372	0.8416	0.8459	0.8502	0.8544	0.8587	0.8629	0.8671	0.8713
2.4	0.8755	0.8796	0.8838	0.8879	0.8920	0.8961	0.9002	0.9042	0.9083	0.9123
2.5	0.9163	0.9203	0.9243	0.9282	0.9322	0.9361	0.9400	0.9439	0.9478	0.9517
2.6	0.9555	0.9594	0.9632	0.9670	0.9708	0.9746	0.9783	0.9821	0.9858	0.9895
2.7	0.9933	0.9969	1.0006	1.0043	1.0080	1.0116	1.0152	1.0188	1.0225	1.0260
2.8	1.0296	1.0332	1.0367	1.0403	1.0438	1.0473	1.0508	1.0543	1.0578	1.0613
2.9	1.0647	1.0682	1.0716	1.0750	1.0784	1.0818	1.0852	1.0886	1.0919	1.0953
3.0	1.0986	1.1019	1.1053	1.1086	1.1119	1.1151	1.1184	1.1217	1.1249	1.1282

Q. If two dice are thrown, find out the probability of getting the sum of numbers obtained is less than 10. Use 2-D data table to generate the sample space.
Q. A business owner wants to increase the profit by 10%. Find out the effect of changing in price of sales and cost by increasing each of them by one unit at a time by using a 2-D data table.

Current Sales	82
Cost per Unit	75
Profit per unit	12

Scenario Manager (1)

Q. The current profit situation of a business owner is as follows.

Current Sales	82
Cost per Unit	75
Profit per unit	12

Using the scenario manager, find the effect of in the new profit in case of the following situations.
a. \quad Sales $=70$ and cost $=80$
b. Sales $=90$ and cost $=72$
c. Sales $=85$ and cost $=80$
d. Sales $=65$ and cost $=80$

